Вот тут ребята похоже смогли воспроизвести двигатель Ричарда Клемма
http://7979.ua.all-biz.info/cat.php?oid=181105
Описание
Гидравлический двигатель-турбина ?АМО? ( вихревая энергетика, энергосбережение )
Принцип работы: в ресивер и полость двигателя закачивается растительное масло либо другая жидкость до определенного давления, жидкость находится в состоянии покоя, затем электроприводом, либо насосом НШ запускается двухстороннее круговое движение жидкости в замкнутом контуре в котором расположена коническая спиралевидная крыльчатка соединенная с валом.
Вихрь созданный крыльчаткой, самостоятельно загружает жидкость вовнутрь и выталкивает наружу через сопло с ускорением, которая возвращается с обратной стороны по замкнутому кругу по всему внутреннему диаметру.
Конструкция герметичная, требует охлаждения, поэтому может использоваться в емкости с водой с дальнейшим отбором тепловой энергии для хозяйственных нужд с циркуляционным насосом 60-100вт.
Установка работает самостоятельно вырабатывая электричество по расчетным конструктивным параметрам. Конструкция на рисунке и конструкция действующей модели будут существенно отличаться.
Технические характеристики
Гидравлический двигатель-турбина ?АМО? ( вихревая энергетика, энергосбережение )
За основу взята вихревая энергетика и рабочая модель сверхединичного двигателя Клемма.
Сверхединичный двигатель Клема.
Добавлено после 56 минут:
Думаю всем посетителям этой темы будет интересно почитать:
http://www.trinitas.ru/rus/doc/0023/001a/00231034.htm
??Исследуя циклические сепараторы для очистки газа от пыли, французский инженер-металлург Ж. Ранке в конце 20-х годов XX века обнаружил необычное явление:
в центре струи газ, выходящий из циклона, имел более низкую температуру, чем исходный.
Уже в конце 1931 г. Ранке получает первый патент на устройство, названное им ?вихревой трубой? (ВТ), в котором осуществляется разделение потока сжатого воздуха на два потока ? холодный и горячий. Вскоре патентует это изобретение и в других странах .
В1933 г. Ранке делает доклад во Французском физическом обществе об открытом им явлении разделения сжатого газа в ВТ. Но научной общественностью его сообщение было встречено с недоверием, так как никто не мог объяснить физику этого процесса. Ведь ученые еще совсем незадолго до того поняли неосуществимость фантастической идеи ?демона Максвелла?, который для разделения теплого газа на горячий и холодный должен был выпускать через микроотверстие из сосуда с газом быстрые молекулы газа и не выпускать медленные. Все решили, что это противоречит второму началу термодинамики и закону возрастания энтропии.
Более 20 лет открытие Ранке игнорировалось. И лишь в 1946 г. немецкий физик Р. Хильш опубликовал работу об экспериментальных исследованиях ВТ, в которой дал рекомендации для конструирования таких устройств. С тех пор их иногда называют трубами Ранке ? Хильша.
?Еще Виктор Шаубергер ? гениальный австрийский самородок, лесник, на досуге занимавшийся физикой, много времени посвятивший в 20-е годы осмыслению вихревого движения, заметил, что
при самопроизвольном раскручивании воды, вытекающей в трубу из ванны, время опорожнивания ванны уменьшается. А это значит, что в вихре возрастает не только тангенциальная, но и осевая скорость потока.
?он пытался объяснить (это) тем, что в вихре в кинетическую энергию осевого движения струи превращается энергия теплового движения молекул в ней. Он указывал, что хотя такое мнение противоречит второму началу термодинамики, но другого объяснения не найти, а снижение температуры воды в водовороте -экспериментальный факт.
Исходя из законов сохранения энергии и импульса, обычно полагают, что при закручивании струи в продольный вихрь часть кинетической энергии поступательного движения струи превращается в энергию ее вращения, и думают, что в результате аксиальная скорость струи должна уменьшаться. Это, как утверждают, должно вести к уменьшению дальнобойности свободных затопленных струй при их закручивании.
Более того, в гидротехнике обычно всячески борются с завихрениями жидкости в устройствах для ее перелива и стремятся обеспечить безвихревое ламинарное течение. Обуславливают это тем, что появление вихревого шнура в потоке жидкости влечет за собой образование воронки на поверхности жидкости над входом в сливную трубу. Воронка начинает энергично засасывать воздух, попадание которого в трубу нежелательно. Кроме того, ошибочно полагают, что появление воронки с воздухом, уменьшающее долю сечения входного отверстия, занятую жидкостью, уменьшает и расход жидкости через это отверстие.
?несмотря на уменьшение доли сечения отверстия, занятой потоком жидкости, последняя при вращении потока вытекает через отверстие быстрее, чем без вращения.
Однако нас интересует здесь не столько турбина Шаубергера, сколько его утверждение о том, что энергия теплового движения молекул воды в вихревом потоке может трансформироваться в кинетическую энергию потока воды. В этом отношении наиболее интересны результаты опытов, поставленных в 1952 г. В. Шаубергером вместе с профессором Францем Попелем в Техническом колледже Штутгарта, о которых рассказывает в [92] Йозеф Гассльбергер из Рима.
Исследуя влияние формы канала водовода и материала его стенок на гидродинамическое сопротивление закрученному потоку воды в нем, экспериментаторы обнаружили, что лучшие результаты достигаются при медных стенках.
Но самое удивительное, что при конфигурации канала, напоминающей рог антилопы, трение в канале с увеличением скорости воды уменьшается, и после превышения некоторой критической скорости вода течет с отрицательным сопротивлением, то есть засасывается в канал и ускоряется в нем.
Гассльбергер согласен с Шаубергером, что тут вихрь трансформирует тепло воды в кинетическую энергию ее потока. Но отмечает, что ?термодинамика, как обучают в школах и университетах, не разрешает такого преобразования теплоты при низких разностях температур?. Однако, указывает Гассльбергер, современная термодинамика не способна объяснить и многие другие природные явления .
?Если Л. Гербранд, ? стремился достичь увеличения мощности гидроэлектростанций только путем спрямления потока воды к турбине и постепенного сужения водовода, с тем чтобы вода приобрела как можно большую скорость поступательного движения, то Шаубергер снабдил сужающийся водовод еще и винтовыми направляющими, закручивающими поток воды в продольный вихрь, а в конце водовода он помещает осевую турбину принципиально новой конструкции. (Патент Австрии ?117749 от 10.05.1930 г.)
Особенностью этой турбины (см. рис. 3.) является то, что она не имеет лопастей, которые в обычных турбинах пересекают поток воды и, разрывая его, затрачивают при этом много энергии впустую на преодоление сил поверхностного натяжения и сцепления молекул воды. Это ведет не только к потерям энергии, но и к появлению кавитационных явлений, обуславливающих эрозию металла турбины.
Турбина Шаубергера имеет коническую форму со спиралеобразованными лезвиями в виде штопора, ввинчивающегося в закрученный поток воды. Она не рвет поток и не создает кавитацию. Неизвестно, была ли такая турбина где-либо реализована на практике, но в ее схеме, безусловно, заложены очень перспективные идеи.?
?Почему турбина в различных описаниях обозначается ?сосущей?, можно сделать вывод из описания экспериментов, проведённых в 1952 г. в Техническом Колледже Штутгарта профессором Францем Поппелом (Franz Poppel) . Эксперименты проводились по заказу Совета Министров ФРГ с целью проверки теорий Шаубергера, поскольку его представления о движении противоречили классической механике и термодинамике. Эксперименты дали необъяснимые с точки зрения последних наук результаты. Одним из таких результатов явилось обнаружение режима прокачки воды по медной трубе, изготовленной в виде точной копии рога антилопы куду (правосторонняя сужающаяся спираль), при котором величина силы трения воды в трубе осциллировала в зависимости от режима прокачки воды, а в одном из режимов оказалась отрицательной.
Ниже приведены фотография этой трубы и графики силы трения воды в трех трубах (прямой стеклянной, прямой медной, спиральной медной) в зависимости от скорости потока прокачиваемой через них воды. Сплошной линией изображаются измеренные значения, пунктиром помечены расчётные.
График силы трения в спиральной медной трубе Шаубергер объяснял с помощью простого принципа движения, называемого им
имплозией . По его мнению, этот принцип было бы разумно использовать в различных машинах, преобразующих энергию. Его отличие от разрушительной
эксплозии, использующейся, к примеру, в двигателях внутреннего сгорания и других машинах, заключается в том, чтобы с помощью механизмов упорядочивать микро движения атомов и молекул, создавая им условия движения по естественным для пространства кривым. В этом случае их движение получает поддержку от движения в пространстве, которое порождается всеми взаимодействующими телами.
В случае с сосущей трубой энергия поперечных столкновений не используется, а демпфируется опорой трубы. Однако даже в этом случае сила трения в спиральной медной трубе меньше силы трения в прямой трубе из того же материала . Осцилляции силы трения в спиральной трубе показывают режимы соответствия динамических параметров столкновений атомов и молекул трубы и воды на разных уровнях масштабов. В одном из режимов, отбираемой из этих столкновений энергии достаточно для движения всей воды в трубе без насоса. При этом режиме по ходу течения должно происходить внутреннее упорядочение и охлаждение воды, как в случае с обтеканием камня в реке. К сожалению, в книге [5] нет сведений о проведении температурных измерений во время тестов в Штутгарте.
?По утверждению автора [5],
существуют свидетельства того, что одну из энергоустановок Шаубергера, изготовленную им для работы в собственном доме, сорвало с фундамента, выбросило через крышу, и она разбилась. То же самое произошло с промежуточным вариантом другой установки, изготавливаемой на заводе в Германии по его чертежам. Ниже приведены фотографии его установок, поясняющие способ использования движения в форме конических спиралей.
Одной из возможных причин неудач с этими установками явилось не только отсутствие модели, ?что не позволяло сделать эффективный контроль преобразования энергии, но и вероятно другое рабочее вещество. Шаубергер экспериментировал также с воздухом, как с теплоносителем.?
??Одним из наиболее близких к сосущей турбине Шаубергера устройств по конструкции и принципу действия является так называемый ?сверхединичный? двигатель Ричарда Клема. В 1972 году Ричард Клем объявил об изобретении автомобильного двигателя закрытого типа, который производил мощность 350 лошадиных сил и работал сам по себе, мотор был проверен корпорацией Bendix. Тест заключался в присоединении двигателя к динамометру для измерения мощности на валу.
Измерения показали, что двигатель устойчиво производил 350 лошадиных сил в течение 9 дней, что поразило инженеров фирмы Bendix. Они пришли к выводу, что источник, который может вырабатывать столько энергии в закрытой системе в течение столь длительного времени, может быть только ядерным! Двигатель весил около 200 фунтов и содержал растительное масло, которое при работе нагревалось до 150 градусов по Цельсию. Внутри двигателя находится конус, закрепленный на оси. Вал, на котором укреплен конус, пустой внутри и переходит в спиральные полые каналы внутри конуса. Они обвивают конус и заканчиваются у его основания соплами (форсунками).
Жидкость подается в центральную ось под давлением 300-500 фунтов на квадратный дюйм, проходит по спиральным каналам и выпрыскивается через форсунки. Чем больше давление жидкости, тем быстрее вращается конус. При работе жидкость нагревается, что требует наличия теплообменника для отдачи тепла в окружающую среду. При некоторой скорости конус начинает самостоятельное вращение, независимое от насоса. Скорость вращения вала достигает 1800-2300 оборотов в минуту.
Насколько известно, Ричард Клем умер от сердечного приступа вскоре после того, как подписал договор с угольной компанией. Его мастерскую посетили представители властей и все его записки и рисунки были изъяты.
Впрочем этого следовало ожидать - физическое устранение человека обладавшего смертельно опасными для теперешнего мироустройства знаниями, хорошо хоть сына пожалели. Хотя скорее всего с ним просто провели разъяснительную беседу на тему - как делать не надо. Не зря парень с перепугу закопал рабочий экземпляр на глубину 3 метров и обильно залил всё это бетоном, видимо при другом способе ( типа разобрать на запчасти) он мог ненароком увидеть что нибудь а знание внутренней конструкции подписало бы и ему смертный приговор.